TEORI BAHASA AUTOMATA



TEORI BAHASA DAN OTOMATA







































 

Teori Bahasa

  • Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah (text processor).
  • Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama.
  • Sebuah bahasa formal bisa dibangkitkan oleh dua atau lebih tata bahasa berbeda.
  •  Dikatakan bahasa formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya.
  • Bahasa Natural/manusia bersifat sebaliknya; grammar diciptakan untuk meresmikan kata-kata yang hidup di masyarakat. Dalam pembicaraan selanjutnya ‘bahasa formal’ akan disebut ‘bahasa’ saja.



Otomata (Automata)

  • Otomata adalah mesin abstrak yang dapat mengenali (recognize), menerima (accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.
 Image result for teori bahasa dan automata

Beberapa Pengertian Dasar :


·         Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
·         String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika a, b, dan c adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari ketiga simbol tersebut.
·         Jika w adalah sebuah string maka panjang string dinyatakan sebagai ïwï dan didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut. Sebagai contoh, jika w = abcb maka ïwï= 4.
·         String hampa adalah sebuah string dengan nol buah simbol. String hampa dinyatakan dengan simbol e (atau ^) sehingga ïeï= 0. String hampa dapat dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
·         Alfabet adalah hinpunan hingga (finite set) simbol-simbol TEORI BAHASA AUTOMATA

Operasi Dasar String

Diberikan dua string : x = abc, dan y = 123
·         Prefik string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling belakang dari string w tersebut.
Contoh : abc, ab, a, dan e adalah semua Prefix(x)
·         ProperPrefix string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling belakang dari string w tersebut.
Contoh : ab, a, dan e adalah semua ProperPrefix(x)
·         Postfix (atau Sufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dari string w tersebut.
Contoh : abc, bc, c, dan e adalah semua Postfix(x)
·         ProperPostfix (atau PoperSufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dari string w tersebut.
Contoh : bc, c, dan e adalah semua ProperPostfix(x)
·         Head string w adalah simbol paling depan dari string w.
Contoh : a adalah Head(x)

·         Tail string w adalah string yang dihasilkan dari string w dengan menghilangkan simbol paling depan dari string w tersebut.
Contoh : bc adalah Tail(x)
·         Substring string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : abc, ab, bc, a, b, c, dan e adalah semua Substring(x)
·         ProperSubstring string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : ab, bc, a, b, c, dan e adalah semua Substring(x)
·         Subsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol dari string w tersebut.
Contoh : abc, ab, bc, ac, a, b, c, dan e adalah semua Subsequence(x)
·         ProperSubsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol dari string w tersebut.
Contoh : ab, bc, ac, a, b, c, dan e adalah semua Subsequence(x)
·         Concatenation adalah penyambungan dua buah string. Operator concatenation adalah concate atau tanpa lambang apapun.
Contoh : concate(xy) = xy = abc123
·         Alternation adalah pilihan satu di antara dua buah string. Operator alternation adalah alternate atau ½.
Contoh : alternate(xy) = x½y = abc atau 123
·         Kleene Closure : x* = e½x½xx½xxx½… = e½x½x½x½
·         Positive Closure : x = x½xx½xxx½… = x½x½x½

Beberapa Sifat Operasi

·         Tidak selalu berlaku : x = Prefix(x)Postfix(x)
·         Selalu berlaku : x = Head(x)Tail(x)
·         Tidak selalu berlaku : Prefix(x) = Postfix(x) atau Prefix(x) ¹ Postfix(x)
·         Selalu berlaku : ProperPrefix(x) ¹ ProperPostfix(x)
·         Selalu berlaku : Head(x) ¹ Tail(x)
·         Setiap Prefix(x), ProperPrefix(x), Postfix(x), ProperPostfix(x), Head(x), dan Tail(x) adalah Substring(x), tetapi tidak sebaliknya
·         Setiap Substring(x) adalah Subsequence(x), tetapi tidak sebaliknya
·         Dua sifat aljabar concatenation :
¨      Operasi concatenation bersifat asosiatif : x(yz) = (xy)z
¨      Elemen identitas operasi concatenation adalah e : ex = xe = x
·         Tiga sifat aljabar alternation :
¨      Operasi alternation bersifat komutatif : x½y = y½x
¨      Operasi alternation bersifat asosiatif : x½(y½z) = (x½y)½z
¨      Elemen identitas operasi alternation adalah dirinya sendiri : x½x = x
·         Sifat distributif concatenation terhadap alternation : x (y½z) = xy½xz
·         Beberapa kesamaan :
¨      Kesamaan ke-1 : (x*)* = x*
¨      Kesamaan ke-2 : e½x = x½e = x*
¨      Kesamaan ke-3 : (x½y)* = e½x½y½xx½yy½xy½yx½… = semua string yang merupakan concatenation dari nol atau lebih x, y, atau keduanya. TEORI BAHASA AUTOMATA

  

GRAMMAR DAN BAHASA

Konsep Dasar


·       Anggota alfabet dinamakan simbol terminal.

·       Kalimat adalah deretan hingga simbol-simbol terminal.

·       Bahasa adalah himpunan kalimat-kalimat. Anggota bahasa bisa tak hingga kalimat.

·       Simbol-simbol berikut adalah simbol terminal :
ü huruf kecil, misalnya : a, b, c, 0, 1, ..
ü simbol operator, misalnya : +, -, dan ´
ü simbol tanda baca, misalnya : (,  ),  dan ;
ü string yang tercetak tebal, misalnya : if, then, dan else.

·       Simbol-simbol berikut adalah simbol non terminal /Variabel :
ü huruf besar, misalnya : A, B, C
ü huruf S sebagai simbol awal
ü string yang tercetak miring, misalnya : expr

·       Huruf yunani melambangkan string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya, misalnya : a, b, dan g.

·       Sebuah produksi dilambangkan sebagai a ® b, artinya : dalam sebuah derivasi dapat dilakukan penggantian simbol a dengan simbol b.

·       Derivasi adalah proses pembentukan sebuah kalimat atau sentensial. Sebuah derivasi dilambangkan sebagai : a Þ b.
·       Sentensial adalah string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya.

·       Kalimat adalah string yang tersusun atas simbol-simbol terminal. Kalimat adalah merupakan sentensial, sebaliknya belum tentu..




C. Mesin Pengenal Bahasa


Untuk setiap kelas bahasa Chomsky, terdapat sebuah mesin pengenal bahasa. Masing-masing mesin tersebut adalah :

Kelas Bahasa
Mesin Pengenal Bahasa
Unrestricted Grammar (UG)
Mesin Turing (Turing Machine), TM
Context Sensitive Grammar (CSG)
Linear Bounded Automata, LBA
Context Free Gammar (CFG)
Pushdown Automata, PDA
Regular Grammar, RG
Finite State Automata, FSA

FINITE STATE AUTOMATA (FSA)


·       FSA didefinisikan sebagai pasangan 5 tupel : (Q, ∑, δ, S, F).

Q : himpunan hingga state

∑ : himpunan hingga simbol input (alfabet)
δ : fungsi transisi, menggambarkan transisi state FSA akibat pembacaan simbol input.
       Fungsi transisi ini biasanya diberikan dalam bentuk tabel.
S Î Q : state AWAL
F Ì Q : himpunan state AKHIR

Contoh : FSA untuk mengecek parity ganjil TEORI BAHASA AUTOMATA
Q ={Gnp, Gjl}                                     diagram transisi
 
∑ = {0,1}

tabel transisi
δ
0
1
Gnp
Gnp
Gjl
Gjl
Gjl
Gnp

S = Gnp, F = {Gjl}




·       Ada dua jenis FSA :

·             Deterministic finite automata (DFA)
·             Non deterministik finite automata.(NFA)

-      DFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tertentu.

                           δ  : Q ´® Q

-      NFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tak tentu.
                  δ : Q ´® 2Q

DFA :

Q = {q0, q1, q2}         
δ diberikan dalam tabel berikut :
                  
= {a, b}
δ
a
b
S = q0
q0
q0
q1
F = {q0, q1}
q1
q0
q2

q2
q2
q2

          





Kalimat yang diterima oleh DFA : a, b, aa, ab, ba, aba, bab, abab, baba
Kalimat yang dittolak oleh DFA  : bb, abb, abba

DFA ini menerima semua kalimat yang tersusun dari simbol a dan b yang tidak mengandung substring bb.

Contoh :

Telusurilah, apakah kalimat-kalimat berikut diterima DFA di atas :

abababaa   è diterima
aaaabab      è diterima
aaabbaba    è ditolak

Jawab :

i)        δ (q0,abababaa) Þ δ (q0,bababaa) Þ δ (q1,ababaa) Þ
δ (q0,babaa) Þ δ (q1,abaa) Þ δ (q0,baa) Þ δ (q1,aa) Þ
δ (q0,a) Þ q0
   Tracing berakhir di q0 (state AKHIR) Þ kalimat abababaa diterima

ii)    δ (q0, aaaabab) Þδ (q0,aaabab) Þδ (q0,aabab) Þ
δ (q0,abab) Þ δ (q0,bab) Þ δ (q1,ab) Þ δ (q0,b) Þ q1

      Tracing berakhir di q1 (state AKHIR) Þ kalimat aaaababa  diterima


iii) δ (q0, aaabbaba) Þ δ (q0, aabbaba) Þ δ (q0, abbaba) Þ
δ (q0, bbaba) Þ δ (q1,baba) Þ δ (q2,aba) Þ δ (q2,ba) Þ δ (q2,a) Þq2

      Tracing berakhir di q2 (bukan state AKHIR) Þ kalimat aaabbaba ditolak



Kesimpulan :

sebuah kalimat diterima oleh DFA di atas jika tracingnya berakhir di salah satu state AKHIR.


NFA :

Berikut ini sebuah contoh NFA (Q, ∑, δ, S, F). dimana :
Q = {q, q, q,q, q}            δ diberikan dalam tabel berikut :                  
= {a, b,c}
δ
a
b
c
S = q
q
{q, q}
{q, q}
{q, q}
F = {q}
q
{q, q}
{q}
{q}

q
{q}
{q, q}
{q}

q
{q}
{q}
{q, q}

q
Æ
Æ
Æ

                                                                                           
kalimat yang diterima NFA di atas : aa, bb, cc, aaa, abb, bcc, cbb
kalimat yang tidak diterima NFA di atas : a, b, c, ab, ba, ac, bc


Sebuah kalimat di terima NFA jika :

·       salah satu tracing-nya berakhir di state AKHIR, atau
·       himpunan state setelah membaca string tersebut mengandung state AKHIR

Contoh :

Telusurilah, apakah kalimat-kalimat berikut diterima NFA di atas :
 ab, abc, aabc, aabb

Jawab :

1. δ(q,ab) Þ δ(q,b) È δ(q ,b) Þ {q, q} È {q} = {q, q, q}

Himpunan state TIDAK mengandung state AKHIR Þ kalimat ab tidak diterima


2. δ(q,abc) Þ δ(q,bc) È δ(q ,bc) Þ { δ(q,c) È δ(q,c)}Èδ(q, c)
{{ q, q}È{ q}}È{ q} = {q, q, q,q}
Himpunan state TIDAK mengandung state AKHIR Þ kalimat abc tidak diterima

3. δ(q,aabc) Þ δ(q,abc) È δ(q ,abc)Þ{ δ(q,bc) È δ(q ,bc)} È
δ (q ,bc) Þ{{ δ(q, c) È δ(q,c)} È δ(q, c)} È δ(q, c) Þ
{{{ q, q}È { q}} È {q}} È {q} = {q, q, q,q}
Himpunan state TIDAK mengandung state AKHIR Þ kalimat aabc tidak diterima

4. δ(q,aabb) Þ δ(q,abb) È δ(q ,abb)
    Þ { δ(q,bb) È δ(q ,bb)} È δ (q ,bb)
         Þ{{ δ(q, b) È δ(q,b)} È δ(q, b)} È δ(q, b)
Þ{{{ q, q}È { q, q}} È {q}} È {q} = {q, q, q, q}
Himpunan state mengandung state AKHIR Þ kalimat aabb diterima


Subscribe to receive free email updates: